用二分法求方程的近似解
的有关信息介绍如下:qq296127621,你好.二分法的基本原理是连续函数的零点定理,表述及证明如下.设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ0.令E={x|f(x)<0,x∈[a,b]}.由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,存在ξ=supE∈[a,b].下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,(i)若f(ξ)>0,则ξ∈[a,b).由函数连续的局部保号性知存在x1∈(ξ,b):f(x1)<0→存在x1∈E:x1>supE,这与supE为E的上界矛盾;(ii)若f(ξ)<0,则ξ∈(a,b].仍由函数连续的局部保号性知存在δ>0,对任意x∈(ξ-δ,ξ):f(x)>0→存在δ>0,对任意x∈E:x<ξ-δ,这又与supE为E的最小上界矛盾。综合(i)(ii),即推得f(ξ)=0。我们还可以利用闭区间套定理来证明零点定理。如果没学过高等数学理解不了上面的证明也没关系.只需要注意一条连续的线,一头在X轴上方,一头在下方,那么这个线至少穿过X轴一次.这个与X轴的交点就是方程的根.现在用实例来解答.比如求Y^3+Y-10=0的在区间Y[0,3]之间的根,先将Y=0代入方程左边,左边=-10,将Y=3代入左边,左边=20,这样已经创造出了一正一负,在0-3之间必有解,找中点.Y=1.5代入,如果是正,就保留负的那一头,如果是负就保留正的那一头,然后重复这一过程,不断找中点,只到等式左边接近或等于零,就解得了近似根或准确根.希望我的回答对你有用.