您的位置首页百科知识

角平分线的性质和判定

角平分线的性质和判定

的有关信息介绍如下:

一、角平分线的性质:

1、角平分线可以得到两个相等的角。

2、角平分线上的点到角两边的距离相等。

3、三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。

4、三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

二、判定:

角的内部到角的两边距离相等的点,都在这个角的平分线上。

因此根据直线公理。

证明:如图,已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB

证明:在Rt△OPD和Rt△OPE中:

OP=OP,PD=PE

∴Rt△OPD≌Rt△OPE(HL)

∴∠1=∠2

∴ OC平分∠AOB

角平分线的性质和判定

扩展资料

角平分线是天然的、涉及对称的特征,一般情况下,有下列三种基本结构:  

1、见角平分线上的一点向角的一边作的垂线,可过该点向另一边作垂线;

2、见角平分线上的一点向角平分线作的垂线,可延长该垂线段交于角的另一 边;

3、在角平分线的两边截取等线段,构造全等.

三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。

三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

参考资料来源:百度百科-角平分线