方阵的行列式是什么?
的有关信息介绍如下:线性代数中,只有方阵有行列式,阵有没有行列式。
由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作|A|或detA.方阵与行列式是两个不同的概念。n阶方阵是n×n个数字按n行n列排列成的数表,方阵首先是矩阵。行列式是这些数字按行列式运算法则所确定的一个数。
若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)余扒上的元与|αij|的完全一样。
行列式A中两行(或列)互换神局,其结果等于-A。 i把行列式A的某行(或列)中竖瞎昌各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
相关定理:
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对"体积"所造成的影响。