幂函数的导数是什么?
的有关信息介绍如下:幂函数导数公式的证明:
y=x^a。
两边取对数lny=alnx。
两边对x求导(1/y)*y'=a/x。
所以y'=ay/x=ax^a/x=ax^(a-1)。
特性介绍:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
a小于0时,x不等于0。
a的分母为偶数时,x不小于0。
a的分母为奇数时,x取R。